The functional role of oriented spatial filters in the perception of mirror symmetry — psychophysics and modeling
نویسندگان
چکیده
We investigated human sensitivity to vertical mirror symmetry in noise patterns filtered for narrow bands of variable orientations. Sensitivity is defined here as the amount of spatial phase randomization corresponding to 75% correct performance in a 2AFC detection task. In Experiment 1, sensitivity was found to be high for tests patterns of all orientations except those parallel to the axis of symmetry. This implies that corresponding mirror-orientations (e.g. -45 and +45 degrees ) are combined prior to symmetry detection. In Experiment 2, observers detected symmetry in tests of variable orientation in the presence of either non-symmetric or symmetric masks filtered for orientations either parallel or perpendicular to the axis. Observers were found to be primarily affected by masks of the same orientation as the test, thus suggesting that symmetry is computed separately in distinct mirror-orientation channels. In Experiment 3, observers detected a symmetric test of variable height and width embedded in random noise. Data revealed that mirror symmetry is computed over a spatial integration region (IR) that remains approximately constant in area but whose height-to-width aspect ratio changes from 20:1 to 2:1 as orientation is varied from parallel to perpendicular to the axis. We compare human data against that of an ideal observer to identify key factors that limit visual performance and discuss the implications for the functional architecture of symmetry perception. We also propose a multi-channel model of symmetry detection that combines the output of oriented spatial filters in a simple and physiologically plausible manner. Particular emphasis is placed on the notion that changes in the shape of the IR with orientation compensate for changes in information density and partially equate performance across orientations.
منابع مشابه
Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry
In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...
متن کاملExplaining the Government Functional Role in Spatial Planning and Management within the Framework of Neoliberalism
Introduction and Background: With the ever-increasing superiority of neoliberalism views and decreasing government investments in public affairs since the 1980s, the functional and ownership roles of the government have been reduced. These functions replaced by the actively growing roles of corporations and nongovernmental institutions in space development and management. For instance, the inde...
متن کاملThe spatial mechanisms mediating symmetry perception
This paper examines the role of spatial frequency and orientation tuned channels in the perception of visual symmetry. Subjects discriminated between band-pass filtered, white noise textures that either did or did not contain vertical bilateral symmetry (VBS, i.e., around a vertical midline) as a function of the spatial phase disruption imposed on the images. Resistance to phase noise is largel...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملDetermination of Spatial-Temporal Correlation Structure of Troposphere Ozone Data in Tehran City
Spatial-temporal modeling of air pollutants, ground-level ozone concentrations in particular, has attracted recent attention because by using spatial-temporal modeling, can analyze, interpolate or predict ozone levels at any location. In this paper we consider daily averages of troposphere ozone over Tehran city. For eliminating the trend of data, a dynamic linear model is used, then some featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 40 شماره
صفحات -
تاریخ انتشار 2000